Low-Voltage CMOS Octal Buffer With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting) # MC74LCX244 The MC74LCX244 is a high performance, non-inverting octal buffer operating from a 1.65 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX244 inputs to be safely driven from 5 V devices. The MC74LCX244 is suitable for memory address driving and all TTL level bus oriented transceiver applications. Current drive capability is 24 mA at the outputs. The Output Enable (\overline{OE}) input, when HIGH, disables the output by placing them in a HIGH Z condition. #### **Features** - Designed for 1.65 to 5.5 V V_{CC} Operation - 5 V Tolerant Interface Capability With 5 V TTL Logic - Supports Live Insertion and Withdrawal - I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 \text{ V}$ - LVTTL Compatible - LVCMOS Compatible - 24 mA Balanced Output Sink and Source Capability - Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements - Latchup Performance Exceeds 500 mA - ESD Performance: - ♦ Human Body Model >2000 V - –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant 1 TSSOP-20 DT SUFFIX CASE 948E QFN20 MN SUFFIX CASES 485AA & 485CB #### **MARKING DIAGRAMS** SOIC-20 WB A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION See detailed ordering and shipping information on page 8 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 8. Figure 1. Pinouts: 20-Lead (Top View) # **PIN NAMES** | PINS | FUNCTION | |----------|----------------------| | nOE | Output Enable Inputs | | 1Dn, 2Dn | Data Inputs | | 10n, 20n | 3-State Outputs | # TRUTH TABLE | INPUTS | | OUTPUTS | |----------------------------|------------|----------| | 1 <u>OE</u>
2 <u>OE</u> | 1Dn
2Dn | 10n, 20n | | L | L | L | | L | Н | Н | | Н | Х | Z | H = High Voltage Level L = Low Voltage Level Z = High Impedance State X = High or Low Voltage Level and Transitions are Acceptable For I_{CC} reasons, DO NOT FLOAT Inputs Figure 2. Logic Diagram #### **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |--|--|--|-------------------------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | VI | DC Input Voltage (Note 1) | | -0.5 to +6.5 | V | | | DC Output Voltage (Note 1) Active- | Mode (High or Low State) | -0.5 to V _{CC} + 0.5 | | | V_{O} | | Tri-State Mode | -0.5 to +6.5 | ٧ | | | Power- | -Down Mode (V _{CC} = 0 V) | -0.5 to +6.5 | | | I _{IK} | DC Input Diode Current | V _{IN} < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < GND | -50 | mA | | I _O | DC Output Source/Sink Current | | ±50 | mA | | I _{CC} or
I _{GND} | DC Supply Current per Supply Pin or Ground Pin | | ±100 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | T_L | Lead Temperature, 1 mm from Case for 10 secs | | 260 | °C | | T_J | Junction Temperature Under Bias | | +150 | °C | | θ_{JA} | Thermal Resistance (Note 2) | SOIC-20W | 96 | °C/W | | | | WQFN20 | 99 | | | | | QFN20 | 111 | | | | | TSSOP-20 | 150 | | | P_{D} | Power Dissipation in Still Air | SOIC-20W | 1302 | mW | | | | WQFN20 | 1256 | | | | | QFN20 | 1127 | 1 | | | | TSSOP-20 | 833 | | | MSL | Moisture Sensitivity | SOIC-20W
All Other Packages | Level 3
Level 1 | _ | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | > 2000
N/A | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. I_O absolute maximum rating must be observed. Measured with minimum pad spacing on an FR4 board, using 76mm-by-114mm, 2-ounce copper trace no air flow per JESD51-7. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued. # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Pa | arameter | Min | Тур | Max | Unit | |---------------------------------|--------------------------------|--|------------------|------------------|-------------------------------|------| | V _{CC} | Supply Voltage | Operating
Data Retention Only | 1.65
1.5 | 3.3
3.3 | 5.5
5.5 | ٧ | | VI | Digital Input Voltage | | 0 | - | 5.5 | V | | Vo | Output Voltage | Active Mode (High or Low State)
Tri-State Mode
Power Down Mode (V _{CC} = 0 V) | 0
0
0 | -
-
- | V _{CC}
5.5
5.5 | ٧ | | T _A | Operating Free-Air Temperature | | -55 | _ | +125 | °C | | t _r , t _f | Input Rise or Fall Rate | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V} \\ V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \\ V_{I} \text{ from } 0.8 \text{ V to } 2.0 \text{ V}, V_{CC} = 3.0 \text{ V} \\ V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \end{cases}$ | 0
0
0
0 | -
-
-
- | 20
20
10
5 | nS/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. # DC ELECTRICAL CHARACTERISTICS | | | | | T _A = -40°C to +85°C | | T _A = -55°C | c to +125°C | | |-----------------|-----------------------------|----------------------------|---------------------|---------------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Max | Min | Max | Unit | | V _{IH} | High-Level Input
Voltage | | 1.65 to
1.95 | 0.65 x
V _{CC} | | 0.65 x
V _{CC} | | V | | | | | 2.3 to 2.7 | 1.7 | | 1.7 | | | | | | | 2.7 to 3.6 | 2.0 | | 2.0 | | | | | | | 4.5 to 5.5 | 0.7 x V _{CC} | | 0.7 x V _{CC} | | | | V _{IL} | Low-Level Input
Voltage | | 1.65 to
1.95 | | 0.35 x
V _{CC} | | 0.35 x
V _{CC} | V | | | | | 2.3 to 2.7 | | 0.7 | | 0.7 | | | | | | 2.7 to 3.6 | | 0.8 | | 0.8 | | | | | | 4.5 to 5.5 | | 0.3 x V _{CC} | | 0.3 x V _{CC} | | | V _{OH} | High-Level | $V_I = V_{IH}$ or V_{IL} | | | | | | V | | | Output Voltage | I _{OH} = -100 μA | 1.65 to 5.5 | V _{CC} - 0.1 | - | V _{CC} - 0.1 | - | | | | | I _{OH} = -4 mA | 1.65 | 1.2 | - | 1.2 | - | | | | | I _{OH} = -8 mA | 2.3 | 1.8 | - | 1.8 | - | | | | | I _{OH} = -12 mA | 2.7 | 2.2 | - | 2.2 | - | | | | | I _{OH} = -16 mA | 3.0 | 2.4 | - | 2.4 | - | | | | | I _{OH} = −24 mA | 3.0 | 2.2 | - | 2.2 | - | | | | | I _{OH} = −32 mA | 4.5 | 3.8 | | 3.8 | | | | V _{OL} | Low-Level | $V_I = V_{IH}$ or V_{IL} | | | | | | V | | | Output Voltage | I _{OL} = 100 μA | 1.65 to 5.5 | - | 0.1 | - | 0.1 | | | | | I _{OL} = 4 mA | 1.65 | - | 0.45 | - | 0.45 | | | | | I _{OL} = 8 mA | 2.3 | - | 0.6 | - | 0.6 | | | | | I _{OL} = 12 mA | 2.7 | - | 0.4 | - | 0.4 | | | | | I _{OL} = 16 mA | 3.0 | _ | 0.4 | - | 0.4 | | | | | I _{OL} = 24 mA | 3.0 | _ | 0.55 | - | 0.55 | | | | | I _{OL} = 32 mA | 4.5 | | 0.6 | | 0.6 | | #### DC ELECTRICAL CHARACTERISTICS | | | | | T _A = -40°C to +85°C | | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ | | | |------------------|---------------------------------------|--|---------------------|---------------------------------|------|--|------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Max | Min | Max | Unit | | Iį | Input Leakage
Current | V _I = 0 to 5.5 V | 3.6 | - | ±5.0 | - | ±5.0 | μΑ | | I _{OZ} | 3-State Output
Leakage Current | $V_I = V_{IH}$ or V_{IL} ,
$V_O = 0$ V to 5.5 V | 3.6 | - | ±5.0 | - | ±5.0 | μΑ | | I _{OFF} | Power Off Leak-
age Current | V _I = 5.5 V or
V _O = 5.5 V | 0 | - | 10 | - | 10 | μΑ | | I _{CC} | Quiescent Supply
Current | V _I = 5.5 V or GND | 3.6 | - | 10 | - | 10 | μΑ | | ΔI_{CC} | Increase in I _{CC} per Input | V _{IH} = V _{CC} - 0.6 V | 2.3 to 3.6 | · | 500 | - | 500 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **AC ELECTRICAL CHARACTERISTICS** | | | | | T _A = -40°C | C to +85°C | T _A = -55°C | to +125°C | | |--|----------------------------------|---------------------|---------------------|------------------------|------------|------------------------|-----------|------| | Symbol | Parameter | Test Condition | V _{CC} (V) | Min | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Propagation Delay,
D to O | See Figures 3 and 4 | 1.65 to
1.95 | - | 10.3 | - | 10.3 | ns | | | | | 2.3 to 2.7 | _ | 7.8 | _ | 7.8 | | | | | | 2.7 | - | 7.5 | - | 7.5 | | | | | | 3.0 to 3.6 | - | 6.5 | - | 6.5 | | | | | | 4.5 to 5.5 | - | 5.9 | - | 5.9 | | | t _{PZH} ,
t _{PZL} | Output Enable Time,OE to OE to O | See Figures 3 and 4 | 1.65 to
1.95 | - | 13.0 | - | 13.0 | ns | | | | | 2.3 to 2.7 | _ | 10.0 | _ | 10.0 | | | | | | 2.7 | _ | 9.0 | _ | 9.0 | | | | | | 3.0 to 3.6 | _ | 8.0 | _ | 8.0 | | | | | | 4.5 to 5.5 | - | 7.3 | - | 7.3 | | | t _{PHZ} ,
t _{PLZ} | Output Disable Time,
OE to O | See Figures 3 and 4 | 1.65 to
1.95 | - | 11.0 | - | 11.0 | ns | | | | | 2.3 to 2.7 | - | 8.4 | - | 8.4 | | | | | | 2.7 | - | 8.0 | - | 8.0 | | | | | | 3.0 to 3.6 | - | 7.0 | - | 7.0 | | | | | | 4.5 to 5.5 | - | 6.0 | - | 6.0 | | | t _{OSHL} ,
t _{OSLH} | Output to Output Skew (Note 5) | | 1.65 to
1.95 | - | - | - | - | ns | | | | | 2.3 to 2.7 | - | - | - | - | | | | | | 2.7 | - | - | - | - | | | | | | 3.0 to 3.6 | - | 1.0 | - | 1.0 | | Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design. ^{5.} These values of V_I are used to test DC electrical characteristics only. #### **DYNAMIC SWITCHING CHARACTERISTICS** | | | T _A = +25°C | | ; | | | |------------------|--------------------------------------|---|-----|--------------|-----|------| | Symbol | Characteristic | Condition | Min | Тур | Max | Unit | | V _{OLP} | Dynamic LOW Peak Voltage
(Note 7) | $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V} $ $V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ | | 0.8
0.6 | | V | | V _{OLV} | Dynamic LOW Valley Voltage (Note 7) | $\begin{array}{c} V_{CC} = 3.3 \text{ V}, \text{ C}_{L} = 50 \text{ pF}, \text{ V}_{IH} = 3.3 \text{ V}, \text{ V}_{IL} = 0 \text{ V} \\ V_{CC} = 2.5 \text{ V}, \text{ C}_{L} = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{ V}, \text{ V}_{IL} = 0 \text{ V} \end{array}$ | | -0.8
-0.6 | | V | ^{7.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. #### **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Тур | Unit | |------------------|--|---|-----|------| | C _{IN} | Input Capacitance | V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 7 | pF | | C _{OUT} | Output Capacitance | V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 8 | pF | | C _{PD} | Power Dissipation Capacitance (Note 8) | 10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 25 | pF | ^{8.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC2} • f_{in} + I_{CC} • V_{CC}. | Test | Switch Position | |-------------------------------------|-----------------| | t _{PLH} / t _{PHL} | Open | | t _{PLZ} / t _{PZL} | V_{LOAD} | | t _{PHZ} / t _{PZH} | GND | C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz Figure 3. Test Circuit | V _{CC} , V | R_L, Ω | C _L , pF | V_{LOAD} | V _{mi} , V | V _{mo} , V | V _Y , V | |---------------------|---------------|---------------------|---------------------|---------------------|---------------------|--------------------| | 1.65 to 1.95 | 500 | 30 | 2 x V _{CC} | V _{CC} /2 | V _{CC} /2 | 0.15 | | 2.3 to 2.7 | 500 | 30 | 2 x V _{CC} | V _{CC} /2 | V _{CC} /2 | 0.15 | | 2.7 | 500 | 50 | 6 V | 1.5 | V _{CC} /2 | 0.3 | | 3.0 to 3.6 | 500 | 50 | 6 V | 1.5 | V _{CC} /2 | 0.3 | | 4.5 to 4.5 | 500 | 50 | 2 x V _{CC} | V _{CC} /2 | V _{CC} /2 | 0.3 | Figure 4. Switching Waveforms # **ORDERING INFORMATION** | Device | Marking | Package | Shipping [†] | |--------------------|------------|----------------|---| | MC74LCX244DWG | LCX244 | SOIC-20 WB | 38 Units / Rail | | MC74LCX244DWR2G | LCX244 | SOIC-20 WB | 1000 / Tape & Reel | | MC74LCX244DTG | LCX
244 | TSSOP-20 | 75 Units / Rail | | MC74LCX244DTR2G | LCX
244 | TSSOP-20 | 2500 / Tape & Reel | | MC74LCX244DTR2G-Q* | LCX
244 | TSSOP-20 | 2500 / Tape & Reel | | MC74LCX244MNTWG | LCX
244 | QFN20, 2.5x4.5 | 3000 / Tape & Reel
(4 mm pitch carrier tape) | # **DISCONTINUED** (Note 9) | NLV74LCX244DTR2G* | TSSOP-20
(Pb-Free) | 2500 / Tape & Reel | |-------------------|-----------------------------|---| | MC74LCX244MN2TWG | QFN20, 2.5x3.5
(Pb-Free) | 3000 / Tape & Reel
(4 mm pitch carrier tape) | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*-}Q Suffx for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable ^{9.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com. QFN20, 2.5x4.5 MM CASE 485AA-01 ISSUE B **DATE 30 APR 2010** #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSIONS & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | |-----|-------------|----------|--|--| | | MILLIMETERS | | | | | DIM | MIN | MAX | | | | Α | 0.80 | 1.00 | | | | A1 | 0.00 | 0.05 | | | | A3 | 0.20 | REF | | | | b | 0.20 | 0.30 | | | | D | 2.50 BSC | | | | | D2 | 0.85 1.15 | | | | | Е | 4.50 | 4.50 BSC | | | | E2 | 2.85 3.15 | | | | | е | 0.50 BSC | | | | | K | 0.20 | i | | | | L | 0.35 0.45 | | | | #### **GENERIC MARKING DIAGRAM*** XXXX = Specific Device Code Α = Assembly Location = Wafer Lot L Υ = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | 20 | ISSU | |--|-----------------| | SCALE 2:1 | | | | | | PIN ONE REFERENCE | | | 2X | | | | 1 | | 20X 0.08 C (A3) A1 SIDE VIEW | A SEATING PLANE | | 20X b 1 2 19 20X b 0.10 C A B 2 1 20 K | | | BOTTOM VIEW | | | DOCUMENT NUMBER: | 98AON12653D | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------------|--|-------------|--| | DESCRIPTION: | QFN20. 2.5X4.5 MM | | PAGE 1 OF 1 | | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | İ | DESCRIPTION: | QFN20, 2.5X3.5, 0.4P | | PAGE 1 OF 1 | | |---|------------------|----------------------|---|-------------|--| | l | DOCUMENT NUMBER: | 98AON65196E | Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 2.35 | 2.65 | | | A1 | 0.10 | 0.25 | | | b | 0.35 | 0.49 | | | С | 0.23 | 0.32 | | | D | 12.65 | 12.95 | | | E | 7.40 | 7.60 | | | е | 1.27 BSC | | | | Н | 10.05 | 10.55 | | | h | 0.25 | 0.75 | | | L | 0.50 | 0.90 | | | A | 0 ° | 7 ° | | #### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ## **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|--|-------------|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # TSSOP-20 WB CASE 948E ISSUE D **DATE 17 FEB 2016** - 7.06 #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K - (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W- | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 | BSC | | М | ٥° | gο | ٥° | g٥ | #### **GENERIC SOLDERING FOOTPRINT MARKING DIAGRAM*** = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSSOP-20 WB | | PAGE 1 OF 1 | | DIMENSIONS: MILLIMETERS 0.65 ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 0.36 16X 1.26 onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales