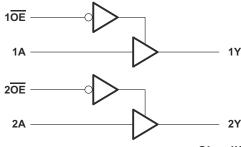
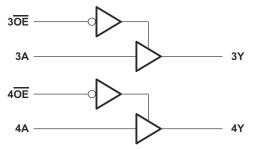


SCAS290T – JANUARY 2015 – REVISED AUGUST 2024

SN74LVC125A Quadruple Bus Buffer Gate With 3-State Outputs

1 Features


Texas


INSTRUMENTS

- · 3-State outputs
- Separate OE for all 4 buffers
- Operates from 1.65V to 3.6V
- Specified from –40°C to 85°C and –40°C to 125°C
- Inputs accept voltages to 5.5V
- Max t_{pd} of 4.8ns at 3.3V
- Typical V_{OLP} (output ground bounce) < 0.8V at V_{CC} = 3.3V, T_A = $25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot)
 > 2V at V_{CC} = 3.3V, T_A = 25°C
- Latch-up performance exceeds 250mA per JESD 17

2 Applications

- · Cable modem termination systems
- IP phones: wired and wireless
- Optical modules
- Optical networking:
 - EPON or video over fiber
- Point-to-point microwave backhaul
- Power: telecom DC/DC modules:
 - Analog or digital
- Private branch exchanges (PBX)
- TETRA base stations
- Telecom base band units
- Telecom shelters:
 - Filter units
 - Power distribution units (PDU)
 - Power monitoring units (PMU)
 - Wireless battery monitoring
 - Remote electrical tilt units (RET)
 - Remote radio units (RRU)
 - Tower mounted amplifiers (TMA)
- Vector signal analyzers and generators
- Video conferencing: IP-based HD
- WiMAX and wireless infrastructure equipment
- Wireless communications testers
- xDSL modems and DSLAM

Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

3 Description

This quadruple bus buffer gate is designed for 1.65V to 3.6V V_{CC} operation.

The SN74LVC125A device features independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (\overline{OE}) input is high.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

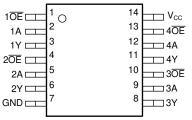
Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

Package Information

rackage information									
PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	BODY SIZE ⁽³⁾						
	BQA (WQFN, 14)	3mm × 2.5mm	3mm × 2.5mm						
	D (SOIC, 14)	8.6 mm × 6mm	8.65mm × 3.91mm						
SN74LVC125A	DB (SSOP, 14)	6.20mm × 7.8mm	6.20mm × 5.30mm						
SN74LVC125A	NS (SOP, 14)	10.2mm × 7.8mm	10.30mm × 5.30mm						
	PW (TSSOP, 14)	5.00mm × 6.4mm	5.00mm × 4.40mm						
	RGY (VQFN, 14)	3.50mm × 3.50mm	3.50mm × 3.50mm						

(1) For more information, see Section 11.

- (2) The package size (length x width) is a nominal value and includes pins, where applicable.
- (3) The body size (length × width) is a nominal value and does not include pins.


Table of Contents

1	Features1	
	Applications1	
3	Description1	
	Pin Configuration and Functions	3
5	Specifications	ł
	5.1 Absolute Maximum Ratings4	Ļ
	5.2 ESD Ratings4	
	5.3 Recommended Operating Conditions	
	5.4 Thermal Information	5
	5.5 Electrical Characteristics	
	5.6 Switching Characteristics6	3
	5.7 Operating Characteristics7	
	5.8 Absolute Maximum Ratings7	7
	5.9 ESD Ratings7	7
	5.10 Recommended Operating Conditions7	
	5.11 Thermal Information	3
	5.12 Electrical Characteristics	3
	5.13 Switching Characteristics)
	5.14 Noise Characteristics	
6	Parameter Measurement Information10)

7 Detailed Description	
7.1 Overview	11
7.2 Functional Block Diagram	
7.3 Feature Description	11
7.4 Device Functional Modes	11
8 Application and Implementation	12
8.1 Typical Application	. 12
8.2 Power Supply Recommendations	13
8.3 Layout	
9 Device and Documentation Support	
9.1 Documentation Support	
9.2 Receiving Notification of Documentation Updates	
9.3 Support Resources	
9.4 Trademarks	
9.5 Electrostatic Discharge Caution	15
9.6 Glossary	
10 Revision History	
11 Mechanical, Packaging, and Orderable	
Information	. 15

4 Pin Configuration and Functions

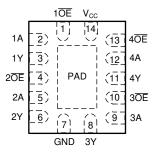


Figure 4-2. BQA or RGY Package (Top View)

Table 4-1. Pin Functions

PIN		I/O ⁽¹⁾	DESCRIPTION
NAME	NO.		DESCRIPTION
1 0E	1	Input	Output Enable
1A	2	Input	Input A
1Y	3	Output	Output Y
2 0E	4	Input	Output Enable
2A	5	Input	Input A
2Y	6	Output	Output Y
GND	7	_	Ground
3Y	8	Output	Output Y
3A	9	Input	Input A
3 0E	10	Input	Output Enable
4Y	11	Output	Output Y
4A	12	Input	Input A
4 0E	13	Input	Output Enable
V _{CC}	14	_	Positive Supply

(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Output voltage range ^{(2) (3)}		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V_{CC} or GND			±100	mA
P _{tot}	Power dissipation	$T_A = -40^{\circ}C$ to $125^{\circ}C^{(4)}$ ⁽⁵⁾		500	mW
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. (2)

(3) The value of V_{CC} is provided in the Section 5.3 table.

(4) For the D package: above 70°C, the value of P_{tot} derates linearly with 8 mW/K.
(5) For the DB, NS, and PW packages: above 60°C, the value of P_{tot} derates linearly with 5.5 mW/K.

5.2 ESD Ratings

	PARAMETER	DEFINITION	VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. (1)

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (2)

5.3 Recommended Operating Conditions

			T _A = 2	T _A = 25°C –40°C to 85°C		–40°C to 1	25°C	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
v	Supply voltage	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V
V _{CC}	Supply voltage	Data retention only	1.5		1.5		1.5		v
		V _{CC} = 1.65V to 1.95V	0.65 × V _{CC}		0.65 × V _{CC}		$0.65 \times V_{CC}$		
V _{IH}	High-level input voltage	V _{CC} = 2.3V to 2.7V	1.7		1.7		1.7		V
	input voltage	V _{CC} = 2.7V to 3.6V	2		2		2		
		V _{CC} = 1.65V to 1.95V		0.35 × V _{CC}	0	.35 × V _{CC}	0.5	35 × V _{CC}	
VIL	Low-level input voltage	V _{CC} = 2.3V to 2.7V		0.7		0.7		0.7	V
		V _{CC} = 2.7V to 3.6V		0.8		0.8		0.8	
VI	Input voltage	·	0	5.5	0	5.5	0	5.5	V
Vo	Output voltage		0	V _{CC}	0	V _{CC}	0	V _{CC}	V
		V _{CC} = 1.65V		-4		-4		-4	
	High-level	V _{CC} = 2.3V		-8		-8		-8	mA
I _{ОН}	output current	V _{CC} = 2.7V		-12		-12		-12	ШA
		V _{CC} = 3V		-24		-24		-24	
		V _{CC} = 1.65V		4		4		4	
	Low-level	V _{CC} = 2.3V		8		8		8	mA
I _{OL}	output current	V _{CC} = 2.7V		12		12		12	
		V _{CC} = 3V		24		24		24	
∆t/∆v	Input transition ris	e or fall rate		8		8		8	ns/V

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5.4 Thermal Information

				SN74LV	/C125A			
	THERMAL METRIC ⁽¹⁾	BQA (WQFN)	D (SOIC)	DB (SSOP)	NS (SOP)	PW (TSSOP)	RGY (VQFN)	UNIT
		14 PINS	14 PINS	14 PINS	14 PINS	14 PINS	14 PINS	
R	θ _{θJA} Junction-to-ambient thermal resistance	102.3	127.8	140.4	123.8	150.8	92.1	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Electrical Characteristics

DADAMETED		V	T _A =	25°C		–40°C to 8	35°C	–40°C to 125°C		
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
	Ι _{ΟΗ} = -100μΑ	1.65V to 3.6V	V _{CC} – 0.2			V _{CC} – 0.2		V _{CC} – 0.3		
	I _{OH} = -4mA	1.65V	1.29			1.2		1.05		
V _{OH}	I _{OH} = -8mA	2.3V	1.9			1.7		1.55		V
-	I _{OH} = -12mA	2.7V	2.2			2.2		2.05		
	$I_{OH} = -12111A$	3V	2.4			2.4		2.25		
	$I_{OH} = -24 \text{mA}$	3V	2.3			2.2		2		
	I _{OL} = 100μA	1.65V to 3.6V			0.1		0.2		0.3	
	I _{OL} = 4mA	1.65V			0.24		0.45		0.6	
V _{OL}	I _{OL} = 8mA	2.3V			0.3		0.7		0.75	V
	I _{OL} = 12mA	2.7V			0.4		0.4		0.6	
	I _{OL} = 24mA	3V			0.55		0.55		0.8	
l _l	V _I = 5.5V or GND	3.6V			±1		±5		±20	μA
I _{OZ}	V _O = V _{CC} or GND	3.6V			±1		±10		±20	μA
I _{CC}	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	3.6V			1		10		40	μA
ΔI _{CC}	One input at $V_{CC} - 0.6V$, Other inputs at V_{CC} or GND	2.7V to 3.6V			500		500		5000	μA
Ci	V _I = V _{CC} or GND	3.3V		5						pF

over recommended operating free-air temperature range (unless otherwise noted)

5.6 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM	то	V	T⊿	(= 25°C	;	–40°C t	o 85°C	–40°C to 125°C		UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			1.8V ± 0.15V	1	4.5	11.8	1	12.3	1	13.8	
+	А	Y	2.5V ± 0.2V	1	2.7	5.8	1	6.3	1	8.4	ns
t _{pd}		1	2.7V	1	3	5.3	1	5.5	1	7	115
			3.3V ± 0.3V	1	2.5	4.6	1	4.8	1	6	
	ŌĒ		1.8V ± 0.15V	1	4.3	13.8	1	14.3	1	15.8	
+		ŌE Y	2.5V ± 0.2V	1	2.7	6.9	1	7.4	1	9.5	ns
t _{en}			2.7V	1	3.3	6.4	1	6.6	1	8.5	
			3.3V ± 0.3V	1	2.4	5.2	1	5.4	1	7	
			1.8V ± 0.15V	1	4.3	10.6	1	11.1	1	12.6	
+	ŌĒ	Y	2.5V ± 0.2V	1	2.2	5.1	1	5.6	1	7.7	20
t _{dis}	UE	OE Y	2.7V	1	2.5	4.8	1	5	1	6.5	ns
			3.3V ± 0.3V	1	2.4	4.4	1	4.6	1	6	
t _{sk(o)}			3.3V ± 0.3V					1		1.5	ns

5.7 Operating Characteristics

T_A = 25°C

	PARAMETER TEST COND		ТҮР	UNIT
		1.8V	7.4	
C _{pd}	Power dissipation capacitance per gate f = 10	MHz 2.5V	11.3	pF
		3.3V	15	

5.8 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{cc}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Output voltage range ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0 V		-50	mA
I _{OK}	Output clamp current	V _O < 0 V		-50	mA
lo	Continuous output current			±50	mA
I _O	Continuous output current through	gh V _{CC} or GND		±100	mA
TJ	Junction temperature		-65	150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.9 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V(ESD)	discharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.10 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

Specifications	Description	Condition	MIN	MAX	UNIT
V _{CC}	Supply voltage		1.1	3.6	V
VI	Input voltage			5.5	V
Vo	Output voltage	(High or low state)		V _{CC}	V
		V _{CC} = 1.8 V		-4	
	High-level output current	V _{CC} = 2.3 V		-8	mA
ЮН		V _{CC} = 2.7 V		-12	IIIA
		V _{CC} = 3 V		-24	
	Low-level output current	V _{CC} = 1.8 V		4	
		V _{CC} = 2.3 V		8	mA
I _{OL}		V _{CC} = 2.7 V		12	ma
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate		10	ns/V	

Copyright © 2024 Texas Instruments Incorporated

SN74LVC125A

SCAS290T - JANUARY 2015 - REVISED AUGUST 2024

over operating free-air temperature range (unless otherwise noted)

Specifications	Description	Condition	MIN	MAX	UNIT
T _A	Operating free-air temperature		-40	125	°C
V _{IH}	High-level input voltage	V _{CC} = 1.1 V	0.75		V
V _{IH}	High-level input voltage	V _{CC} = 1.2 V	0.78		V
V _{IH}	High-level input voltage	V _{CC} = 1.5 V	0.975		V
V _{IH}	High-level input voltage	V _{CC} = 1.65 V	1.075		V
V _{IH}	High-level input voltage	V _{CC} = 1.95 V	1.2675		V
V _{IH}	High-level input voltage	V _{CC} = 2.3 V	1.7		V
V _{IH}	High-level input voltage	V _{CC} = 2.7 V	1.7		V
V _{IH}	High-level input voltage	V _{CC} = 3.6 V	2		V
V _{IL}	Low-Level input voltage	V _{CC} = 1.1 V		0.40	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.2 V		0.42	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.5 V		0.525	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.65 V		0.5775	V
V _{IL}	Low-Level input voltage	V _{CC} = 1.95 V		0.6825	V
V _{IL}	Low-Level input voltage	V _{CC} = 2.3 V		0.7	V
V _{IL}	Low-Level input voltage	V _{CC} = 2.7 V		0.7	V
V _{IL}	Low-Level input voltage	V _{CC} = 3.6 V		0.8	V

5.11 Thermal Information

		Package Options				
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	D (SOIC)	BQA (WQFN)	UNIT	
		14 PINS	14 PINS	14 PINS		
R _{θJA}	Junction-to-ambient thermal resistance	150.8	127.8	102.3	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	78.3	81.9	96.8	°C/W	
R _{θJB}	Junction-to-board thermal resistance	93.8	84.4	70.9	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	24.7	39.6	16.6	°C/W	
Y _{JB}	Junction-to-board characterization parameter	93.2	83.9	70.9	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	50.1	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.12 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

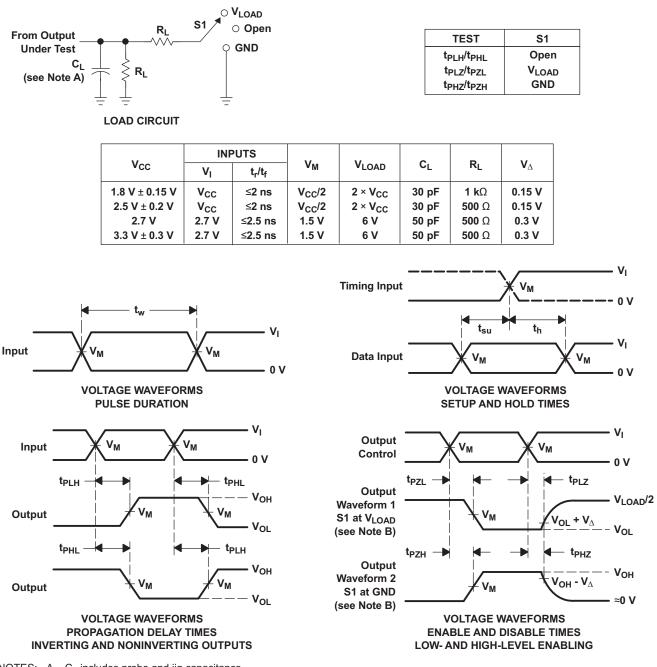
DADAMETED	TEST CONDITIONS	N N	-40°C to	-40°C to 125°C		UNIT
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	ТҮР	MAX	UNIT
V _{OH}	I _{OH} = –100 μA	1.1 V to 3.6 V	V _{CC} - 0.2			V
V _{OH}	I _{OH} = –4 mA	1.65 V	1.2			V
V _{OH}	I _{OH} = –8 mA	2.3 V	1.75			V
V _{OH}	L = 12 mA	2.7 V	2.2			V
V _{OH}	— I _{OH} = –12 mA	3 V	2.4			V
V _{OH}	I _{OH} = –24 mA	3 V	2.2			V
V _{OL}	I _{OH} = 100 μA	1.1 V to 3.6 V			0.15	V
V _{OL}	I _{OH} = 4 mA	1.65 V			0.45	V
V _{OL}	I _{OH} = 8 mA	2.3 V			0.7	V
V _{OL}	I _{OH} = 12 mA	2.7 V			0.4	V

over operating free-air temperature range (unless otherwise noted)

DADAMETED	TEAT CONDITIONS		-40°C to 125°C		LINUT	
PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT	
V _{OL}	I _{OH} = 24 mA	3 V		0.55	V	
I _I	V _I = V _{CC} or GND	3.6 V		±5	μA	
l _{off}	$V_1 \text{ or } V_0 = V_{CC}$	0 V		±10	μA	
I _{OZ}	V _O = V _{CC} or GND	3.6 V		±15	μA	
I _{CC}	$V_{I} = V_{CC} \text{ or GND}, I_{O} = 0$	3.6 V		40	μA	
ΔI _{CC}	One input at V _{CC} - 0.6 V, other inputs at V _{CC} or GND	2.7 V to 3.6 V		500	μA	
CI	V _I = V _{CC} or GND	3.3 V	4.9		pF	
Co	V _O = V _{CC} or GND	3.3 V	6.3		pF	
C _{PD}	f = 10 MHz	1.8 V	31		pF	
C _{PD}	f = 10 MHz	2.5 V	31		pF	
C _{PD}	f = 10 MHz	3.3 V	32		pF	
		1.8 V				
C _{PD}	Outputs disabled, f = 10 MHz	2.5 V			pF	
		3.3 V				

5.13 Switching Characteristics

over operating free-air temperature range; typical values measured at T_A = 25°C (unless otherwise noted). See *Parameter Measurement Information*


PARAMETER	FROM	TO (OUTPUT)	LOAD CAPACITANCE	v	-40	°C to 125	5°C	UNIT
PARAMETER	(INPUT)		LUAD CAPACITANCE	V _{cc}	MIN	TYP	MAX	UNIT
+	A, B or C	v	C _L = 15 pF	1.2 V ± 0.1 V		12	23	50
t _{pd}	A, BOIC	Y	C _L = 15 pF	1.5 V ± 0.12 V		9	12	ns
	A Der C		C _L = 30 pF	1.8 V ± 0.15 V			10.2	
+			C _L = 30 pF	2.5 V ± 0.2 V			6.9	50
t _{pd}			C _L = 50 pF	2.7 V			4.8	ns
			C _L = 50 pF	3.3 V ± 0.3 V			4.1	
t _{sk(o)}				3.3 V ± 0.3 V			1.5	ns

5.14 Noise Characteristics

VCC = 3.3 V, CL = 50 pF, TA = 25°C

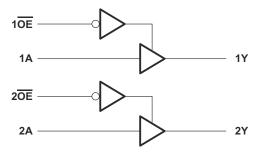
PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}			0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}	-0.8	-0.3		V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}	2.2	3.3		V
V _{IH(D)}	High-level dynamic input voltage	2.0			V
V _{IL(D)}	Low-level dynamic input voltage			0.8	V

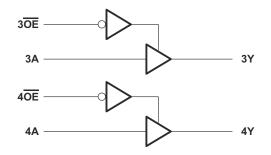
6 Parameter Measurement Information

- NOTES: A. C₁ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR < 10 MHz, $Z_O = 50 \Omega$.

 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.
 - H. All parameters and waveforms are not applicable to all devices.

Figure 6-1. Load Circuit and Voltage Waveforms




7 Detailed Description

7.1 Overview

The SN74LVC125A device is a quadruple bus buffer gate featuring independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (\overline{OE}) input is high. When \overline{OE} is low, the respective gate passes the data from the A input to its Y output. To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

7.2 Functional Block Diagram

7.3 Feature Description

- Wide operating voltage range
 - Operates from 1.65V to 5.5V
- Allows down voltage translation
- Inputs accept voltages to 5.5V

7.4 Device Functional Modes

Table 7-1. Function Table

INP	UTS	OUTPUT
ŌĒ	Α	Y
L	Н	н
L	L	L
Н	Х	Z

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Typical Application

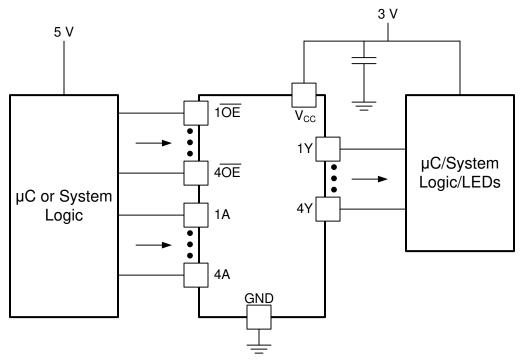
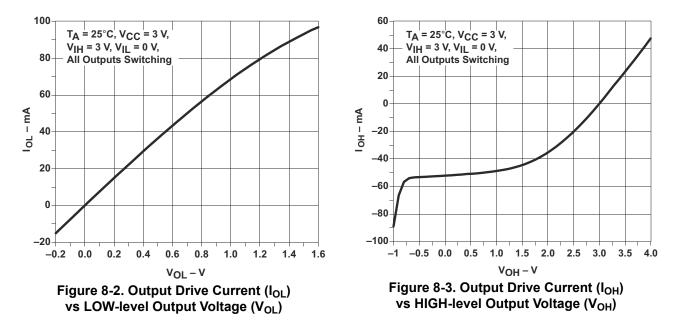


Figure 8-1. Typical Application Schematic

8.1.1 Design Requirements


This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

8.1.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see ($\Delta t/\Delta V$) in the Section 5.3 table.
 - For specified high and low levels, see (V_{IH} and V_{IL}) in the Section 5.3 table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V_I max) in the Section 5.3 table at any valid V_{CC}.
- 2. Recommend Output Conditions:
 - Load currents should not exceed (I_O max) per output and should not exceed (Continuous current through V_{CC} or GND) total current for the part. These limits are located in the Section 5.1 table.
 - Outputs should not be pulled above V_{CC}.
 - Series resistors on the output may be used if the user desires to slow the output edge signal or limit the
 output current.

8.1.3 Application Curves

8.2 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 5.3 table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 µf is recommended; if there are multiple V_{CC} pins, then 0.01 µf or 0.022 µf is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 µf and a 1 µf are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

8.3 Layout

8.3.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 8-4 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient.

8.3.2 Layout Example



Figure 8-4. Example layout for the SN74LVC125A

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 9-1 Related Links

Table 5-1. Related Links							
PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY		
SN74LVC125A	Click here	Click here	Click here	Click here	Click here		

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

С	hanges from Revision S (May 2024) to Revision T (August 2024)	Page
•	Updated thermal values for D package from RθJA = 86 to 127.8, all values in °C/W	5

С	changes from Revision R (February 2024) to Revision S (May 2024)	Page
•	Updated R0JA values: DB = 96 to 140.4, NS = 76 to 123.8, PW = 113 to 150.8, RGY = 47 to 92.1; Upd	ated
	DB, NS, PW, and RGY packages for R0JC(top), R0JB, WJT, WJB, and R0JC(bot), all values in °C/W	<mark>5</mark>

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC125ABQAR	ACTIVE	WQFN	BQA	14	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV125A	Samples
SN74LVC125AD	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADBR	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125ADBRG4	ACTIVE	SSOP	DB	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125ADE4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADG4	ACTIVE	SOIC	D	14	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADRE4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADRG3	ACTIVE	SOIC	D	14	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADT	ACTIVE	SOIC	D	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ADTG4	ACTIVE	SOIC	D	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125ANSR	ACTIVE	SO	NS	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC125A	Samples
SN74LVC125APW	ACTIVE	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125APWE4	ACTIVE	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125APWG4	ACTIVE	TSSOP	PW	14	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125APWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125APWRE4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125APWRG3	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	SN	Level-1-260C-UNLIM		LC125A	Samples
SN74LVC125APWRG4	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC125APWT	ACTIVE	TSSOP	PW	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125APWTE4	ACTIVE	TSSOP	PW	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125APWTG4	ACTIVE	TSSOP	PW	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC125A	Samples
SN74LVC125ARGYR	ACTIVE	VQFN	RGY	14	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC125A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC125A :

• Automotive : SN74LVC125A-Q1

Enhanced Product : SN74LVC125A-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated